A fully defined matrix to support a pluripotent stem cell derived multi-cell-liver steatohepatitis and fibrosis model

نویسندگان

چکیده

Chronic liver injury, as observed in non-alcoholic steatohepatitis (NASH), progressive fibrosis, and cirrhosis, remains poorly treatable. Steatohepatitis causes hepatocyte loss part by a direct lipotoxic insult, which is amplified derangements the non-parenchymal cellular (NPC) interactive network wherein hepatocytes reside, including, hepatic stellate cells, sinusoidal endothelial cells macrophages. To create an vitro culture model encompassing all these that allows studying steatosis, inflammation fibrosis caused NASH, we here developed fully defined hydrogel microenvironment, termed maturation (HepMat) gel, supports maintenance of pluripotent stem cell (PSC) derived hepatocyte- NPC-like for at least one month. The HepMat-based co-culture system modeled key molecular functional features TGF?-induced fatty-acid induced better than monocultures its constituent populations. novel should open new avenues mechanisms underlying well assessing drugs counteracting effects.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quick update from the Past to Current Status of Human Pluripotent Stem Cell-derived Hepatocyte culture systems

Pluripotent stem cells (PSCs) may be offered as an unlimited cell source for the hepatocyte generation. The generation of hepatocytes from stem cells in vitro would provide an alternative cell source for applications in drug discovery and cell transplantation. In this review, we discuss different approaches to generate pluripotent stem cell-derived hepatocytes, advantages, limitations for each ...

متن کامل

A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation.

Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising for numerous biomedical applications, such as cell replacement therapies, tissue and whole-organ engineering, and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however, the scalable expan...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Alpha-Tocopherol increases the proliferation of induced pluripotent stem cell derived neural progenitor cells

In addition to its antioxidant effect, Vitamin E or α–tocopherol is suggested to enhance remyelination in the animal model of non-inflammatory demyelination. In this study, the possible proliferative effect of vitamin E on human- induced pluripotent stem cell-derived neural progenitors (hiPS-NPs) and the underlying mechanisms were investigated in vitro. NPs were induced from iPS cells via 3 ste...

متن کامل

Clinical translation of bioartificial liver support systems with human pluripotent stem cell-derived hepatic cells

There is currently a pressing need for alternative therapies to liver transplantation. The number of patients waiting for a liver transplant is substantially higher than the number of transplantable donor livers, resulting in a long waiting time and a high waiting list mortality. An extracorporeal liver support system is one possible approach to overcome this problem. However, the ideal cell so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biomaterials

سال: 2021

ISSN: ['0142-9612', '1878-5905']

DOI: https://doi.org/10.1016/j.biomaterials.2021.121006